Chronic Kidney Disease March 2023

References

No-Date

KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease

Chronic Kidney Disease: Detection and Evaluation AFP 2017

DAVID Y. GAITONDE, MD; DAVID L. COOK, MD; and IAN M. RIVERA, MD Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia Review Open Access Published: 30 November 2021

Chronic Kidney Disease and SGLT2 Inhibitors: A Review of the Evolving Treatment Landscape

Christian W. Mende 🖂

Advances in Therapy39, 148–164 (2022)Cite this article7043Accesses11Citations19AltmetricMetrics

Chronic Kidney Disease

WHAT IS OUR JOB?

Screen for CKD in patients at risk for CKD to try and slow progression

- ACE/ARB
- SGLT-2
- Appropriate med dosing
- Minimize further damage no nephrotoxic meds, smoking cessation, mgt of DM/HTN

Chronic kidney disease

► WHAT IS OUR JOB?

- Make sure there is not a potentially reversible/treatable cause or component of the CKD.
 - Nephrotoxic meds
 - Urinary obstruction
 - Autoimmune kidney disease
 - Multiple myeloma

Chronic Kidney Disease

► WHAT IS OUR JOB?

- Monitor for progression of CKD
 - Impending need for dialysis/transplant referral to nephrology

- Monitor for complications of CKD
 - Anemia
 - Phosphate, calcium, parathyroid
 - ▶ Potassium
- Support patient through decision for dialysis/transplant

Case #1 (FMC Case)

- 59 year old white male presents to the FMC for follow-up hypertension. He has no complaints and has been taking all his meds as prescribed.
- His last labs (CMP, CBC, lipids and A1C) were all normal, but were done one year ago.

Case #1

- HTN amlodipine 10 mg, HCTZ 12.5 mg, lisinopril 40 mg
- Hyperlipidemia pravastatin
- Peripheral arterial disease s/p stent, ASA, cilostazol
- Ascending aortic aneurysm 4.6 cm
- GERD omeprazole
- Chronic back pain Flexeril
- Current smoker 1 1/2 ppd

Does he need screening for CKD?

Chronic Kidney Disease

► WHAT IS OUR JOB?

Screen for CKD in patients at risk for CKD to try and slow progression

- ACE/ARB
- SGLT-2
- Appropriate med dosing
- Minimize further damage no nephrotoxic meds, smoking cessation, mgt of DM/HTN

CKD Screening (Case-Finding)

- Almost all guidelines agree that screening of the entire population in NOT warranted.
- All guidelines agree that people at high risk for developing CKD should be screened.
 - Cost-effectiveness analysis supports this
- In a study of 25,000 people with no increased risk for CKD, only 6 developed ESRD.

High Risk for CKD

- Diabetes, HTN, CVD
- HIV, Hepatitis C
- Malignancy (current or hx of)
- Autoimmune disease
- Chronic nephrolithiasis
- Recurrent UTI
- Chevally set a sumar so way the Also need uring onthe so way Native American, African-American
- Sickle cell trait
- Chronic nephrotoxic meds (NSAIDS, lithium)

MENN OF STRESS DESCO

Family hx of renal disease

Method of Screening

Get urine albumin-creatinine ratio AND serum creatinine to estimate GFR

CKD is detected earlier with urine albumincreatinine ratio

SCREENING KEY POINT

SCREEN HIGH RISK PATIENTS YEARLY WITH BOTH SERUM CREATININE (eGFR) AND ALBUMIN-CREATININE RATIO

eGFR < 60 OR albumin-creatinine ratio > 30
ECKD

Frequency of Screening

Screen diabetics yearly

Screen other patients at risk every 1-3 years (including hypertensive pts)

Case #1

Our patient has HTN and vascular disease
 HE SHOULD BE SCREENED FOR CKD - every 1-3 yrs

- No albumin-creatinine ratio was done, but UA was normal.
- ▶ BMP reveals a creatinine of 1.38 with an eGFR = 53.
- CBC and CMP otherwise normal
- ► A1C = 5.4
- Cholesterol = 218, LDL = 104, HDL = 83

Does he have CKD?

CKD Definition

1.1: DEFINITION OF CKD

1.1.1: CKD is defined as abnormalities of kidney structure or function, present for >3 months, with implications for health. (*Not Graded*)

Markers of kidney damage (one or more)	Albuminuria (AER \geq 30 mg/24 hours; ACR \geq 30 mg/g [\geq 3 mg/mmol]) Urine sediment abnormalities Electrolyte and other abnormalities due to tubular disorders Abnormalities detected by histology Structural abnormalities detected by imaging History of kidney transplantation
Decreased GFR	GFR <60 ml/min/1.73 m ² (GFR categories G3a-G5)

Criteria for CKD (either of the following present for >3 months)

Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate.

CKD Classification and Prognosis

Prognosis of CKD by GFR and Albuminuria Categories: KDIGO 2012			Persistent albuminuria categories Description and range			
			A1	A2	A3	
			Normal to mildly increased	Moderately increased	Severely increased	
			<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol	
m²)	G1	Normal or high	≥90			
n/ 1.73 ange	G2	Mildly decreased	60-89			
ml/min and n	G3a	Mildly to moderately decreased	45-59			
ories (ription	G3b	Moderately to severely decreased	30-44			
categ	G4	Severely decreased	15-29			
GFR	G5	Kidney failure	<15			

Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

Case #1

- Our patient has Stage 3a CKD according to his eGFR. (Looking back, he had a similar creatinine a year ago.)
- ► His BP = 140/90
- ► He is on amlodipine, lisinopril and HCTZ.
- ► WHAT CAN WE DO TO SLOW PROGRESSION?

- Control hyperglycemia (goal A1C < 7)</p>
- Avoid nephrotoxic meds NSAIDS, iodine contrast
- Control blood pressure
- Decrease proteinuria
- Certain BP meds lower BP AND decrease proteinuria
 - ACE inhibitors and ARBS
 - Diltiazem and verapamil (NOT amlodipine or nifedipine)

BP Goal

KDIGO - depends on albumin-creatinine ratio

▶ If alb/creat < 30, goal BP = 140/90

▶ If alb/creat > 30, goal BP = 130/80

Benefit from intensive BP control has only been clearly shown in patients with proteinuria.

Up-To-Date recommends a goal BP of 125/80 for everyone for the cardiovascular benefits.

Barriers to prescribing ACE inhibitor or ARB

- MYTH "People with kidney disease should not get these - they are nephrotoxic."
 - GFR may decrease over the first 6-8 wks of starting ACE/ARB but it is usually < 30% decline in GFR and does not seem to be clinically significant.
 - GFR may decrease > 30% in some people (0.7%) who have or are at risk for renal artery stenosis.
 - Follow BMP in these patients over the first 8 weeks
 - There is NO limiting GFR!

Barriers to ACE/ARB use

- ► Hypotension 1.7% in ACE, 2.7% in ARB
- ► Hyperkalemia (> 5.5) 3.3%
 - Increased risk with GFR < 15</p>
- Cough ACE>>ARB
- Angioedema ACE>>ARB
- Cannot use in pregnancy

What about African-American patients?

Studies clearly show a benefit of ACE/ARB in patients with CKD AND proteinuria

Less clear if there is benefit or ACE/ARB in CKD patients without proteinuria

What about diuretics?

- Most patients with CKD have some degree of fluid overload.
- Diuretics can help with this and are OK to use in CKD patients.
- Higher doses may be needed.
- Thiazides will not work as well once GFR is < 30 and a loop diuretic (torsemide or furosemide) should be used instead or added.
- A rise in creatinine on a diuretic likely indicates hypovolemia from overdiuresis.

Diabetic patients and SGLT2's

- SGLT2 inhibitors decrease proteinuria and should be used in ANY type 2 diabetics with increased albumin-creatinine ratio, REGARDLESS OF THEIR A1C
- CREDENCE trial decreased CKD progression by 30% in patients with DKD given canagliflozin (Invokana)
- Invokana is now FDA-approved for diabetic nephropathy with GFR > 30 and albuminuria.

- Practice changer What about SGLT2 inhibitors in NON-diabetics with CKD?
 - DAPA-CKD trial
 - Patients with CKD from ANY cause were given dapagliflozin (Farxiga).
 - Decrease in CKD progression by 39% AND decrease in all-cause mortality by 31%!!
 - Farxiga is now FDA-approved for ANY CKD patient with a GFR > 25 and who is at risk for progression.

Prescribing SGLT2-inhibitors

- There is an expected initial drop in GFR of about 4 points in the first 2-3 weeks of treatment.
 - The GFR then stabilizes and there is overall less decline in GFR than placebo.
- THIS IS NOT A REASON TO STOP THE MED! (unless GFR drops by 30%)
- A larger drop in GFR is more likely in a volumedepleted patient.
 - Correct volume-depletion (eg decrease diuretic) prior to starting med.

Prescribing SGLT2-inhibitors

► Risk

Increased risk of euglycemic DKA in some patients

- Patients on a ketogenic diet
- Patients with insulin deficiency (type 1 diabetics and type 2 diabetics who have had DKA)
- Patients with alcohol use disorder
- Increased risk of genital yeast infections.
- ► No serious UTI's were seen in the studies.

Prescribing SGLT2-inhibitors

- Things we thought were risks:
 - NO increased risk of lower extremity amputation or fracture in these studies.
 - ▶ NO increased risk of AKI.
 - ▶ NO major hypoglycemic episodes in non-diabetic patients.

Other Meds to Slow Progression

Finerenone (Kerendia) - mineralcorticoid agonist

- FIDELIO-DKD trial decreased CKD progression in patients with diabetic nephropathy
- Now FDA-approved for this indication
- Down-side is hyperkalemia
- ► GLP1-Receptor Agonists
 - Ongoing trial (FLOW study) for semaglutide in patients with diabetic nephropathy

Case #1

- Our patient has not had a urine alb-creatinine ratio done - this would help determine BP goal and choice of meds.
- His BP = 140/90. If his ACR is > 30 he would likely benefit from more intensive BP control.

Chronic Kidney Disease

► WHAT IS OUR JOB?

- Screen for CKD in patients at risk for CKD to try and slow progression
 - ACE/ARB
 - SGLT-2
 - Appropriate med dosing
 - Minimize further damage no nephrotoxic meds, smoking cessation, mgt of DM/HTN

Table 32 | Cautionary notes for prescribing in people with CKD

Agents	Cautionary notes	
1. Antihypertensives/cardiac medi	cations	
RAAS antagonists (ACE-ls,	 Avoid in people with suspected functional renal artery stenosis 	
ARBs, aldosterone antagonists,	• Start at lower dose in people with GFR <45 ml/min/1.73 m ²	
direct renin inhibitors)	 Assess GFR and measure serum potassium within 1 week of starting or following any dose escalation 	
	 Temporarily suspend during intercurrent illness, planned IV radiocontrast administration, 	
	bowel preparation prior to colonoscopy, or prior to major surgery	
	• Do not routinely discontinue in people with GFR $<$ 30 ml/min/1.73 m ² as they remain nephroprotective	
Beta-blockers	• Reduce dose by 50% in people with GFR $<$ 30 ml/min/1.73 m ²	
Digoxin	Reduce dose based on plasma concentrations	

ANALGESICS

2. Analgesics	
NSAIDS	• Avoid in people with GFR $<$ 30 ml/min/1.73 m ²
	• Prolonged therapy is not recommended in people with GFR <60 ml/min/1.73 m ²
	 Should not be used in people taking lithium
	 Avoid in people taking RAAS blocking agents
Opioids	• Reduce dose when GFR $< 60 \text{ ml/min}/1.73 \text{ m}^2$
	• Use with caution in people with GFR < 15 ml/min/1.73 m ²

NO NSAIDS if GFR < 30 Reduce dose of opioids

ANTIBIOTICS

2 A setting i available la

	5. Anumicropiais	
	Penicillin	 Risk of crystalluria when GFR <15 ml/min/1.73 m² with high doses
		• Neurotoxicity with benzylpenicillin when GFR <15 ml/min/1.73 m ² with high doses (maximum 6 g/day)
	Aminoglycosides	• Reduce dose and/or increase dosage interval when GFR $< 60 \text{ ml/min}/1.73 \text{ m}^2$
		 Monitor serum levels (trough and peak)
		 Avoid concomitant ototoxic agents such as furosemide
Ì	Macrolides	 Reduce dose by 50% when GFR <30 ml/min/1.73 m²
	Fluoroquinolones	 Reduce dose by 50% when GFR <15 ml/min/1.73 m²
	Tetracyclines	 Reduce dose when GFR <45 ml/min/1.73 m²; can exacerbate uremia
	Antifungals	• Avoid amphotericin unless no alternative when GFR <60 ml/min/1.73 m ²
		• Reduce maintenance dose of fluconazole by 50% when GFR $<$ 45 ml/min/1.73 m ²
l		 Reduce dose of flucytosine when GFR <60 ml/min/1.73 m²

May need to reduce dose

DIABETES MEDS

4	4. Hypoglycemics	
	Sulfonylureas	 Avoid agents that are mainly renally excreted (e.g., glyburide/ glibenclamide)
		 Other agents that are mainly metabolized in the liver may need reduced dose when
		GFR $<$ 30 ml/min/1.73 m ² (e.g., gliclazide, gliquidone)
	Insulin	• Partly renally excreted and may need reduced dose when GFR <30 ml/min/1.73 m ²
1	Metformin	 Suggest avoid when GFR <30 ml/min/1.73 m², but consider risk-benefit if GFR is stable
		• Review use when GFR <45 ml/min/1.73 m ²
		• Probably safe when GFR \ge 45 ml/min/1.73 m ²
		 Suspend in people who become acutely unwell

Avoid glyburide Metformin OK until GFR = 30-45 May need to decrease insulin
5. Lipid-lowering Statins	 No increase in toxicity for simvastatin dosed at 20 mg per day or simvastatin 20 mg /ezetimide 10 mg combinations per day in people with GFR < 30 ml/min/1.73 m² or on dialysis⁴⁴⁹ Other trials of statins in people with GFR < 15 ml/min/1.73 m² or on dialysis also showed no excess toxicity
Fenofibrate	 Increases SCr by approximately 0.13 mg/dl (12 μmol/l)

CHOLESTEROL MEDS

Statins are okay

ANTI-COAGULANTS

7. Anticoagulants Low-molecular-weight heparins	Halve the dose when GFR $<$ 30 ml/min/1.73 m ² Consider switch to conventional heparin or alternatively monitor plasma anti-factor Xa in those at high in for bleeding	risk
Warfarin	Increased risk of bleeding when GFR $<$ 30 ml/min/1.73 m ²	

LMWH CAN be used with CKD DOAC's can be used if GFR > 30 (apixaban if GFR > 15)

8. Miscellaneous

Lithium

- Nephrotoxic and may cause renal tubular dysfunction with prolonged use even at therapeutic levels
- Monitor GFR, electrolytes, and lithium levels 6 monthly or more frequently if the dose changes or the patient is acutely unwell
- Avoid using concomitant NSAIDs
- Maintain hydration during intercurrent illness
- Risk-benefit of drug in specific situation must be weighed

Case #1

Does our patient need any further eval for his CKD, or can we say it is from the hypertension?

Chronic kidney disease

► WHAT IS OUR JOB?

- Nephrotoxic meds
- Urinary obstruction
- Autoimmune kidney disease
- Multiple myeloma

WORK-UP

Search For Treatable Causes

- The majority of CKD is caused by diabetes and/or HTN.
- However, people can have more than one cause of their CKD!

WE DO NOT WANT TO MISS SOMETHING WE COULD TREAT!!

Treatable Causes

- Nephrotoxins lithium, NSAIDS, lead
- Urinary Obstruction
- Auto-Immune Disease/Glomerulonephritis/Vasculitis
- Multiple Myeloma, Light Chain Deposition Disease
- ► HIV
- Hepatitis B or C
- ?? Renal Artery Stenosis

LABS

EVERYONE GETS:

- CMP electrolytes, glucose, calcium, protein, albumin
- CBC diff anemia
- Urine microscopy dysmorphic RBC's, casts
- Urine albumin-creatinine ratio

► HIV

- ► Hepatitis B S Ag, Hepatitis C Ab
- ANA if concern for lupus

LABS

- People over 40 with anemia, elevated Ca, bony lesions or unexplained, worsening CKD get:
 - Serum protein electrophoresis
 - Urine protein electrophoresis
 - Serum free light chain assay

LABS

- Anyone with rapidly progressive CKD or evidence of glomerular disease on UA (dysmorphic RBC's, casts) gets:
 - Anti-neutrophil cytoplasmic Ab test
 - Anti-glomerular basement membrane Ab test
 - Serum complement tests C3 and C4
 - Serum cryoglobulin

AND referral to nephrology!

IMAGING

EVERYONE GETS A RENAL ULTRASOUND!!

- ► Hydronephrosis
- Stones, masses, cysts
- Distended bladder
- Small kidneys usually scarred and atrophied from chronic disease or vascular disease
- Large kidneys polycystic kidneys, infiltrative disease

Hydronephrosis Grading

Figure 1. Ultrasound of a distended bladder containing more than 450 mL of urine.

IMAGING

What about evaluating the renal arteries?

- Up-To-Date suggests a renal arterial doppler if the patient is at high risk for renal artery stenosis:
 - ► Over age 50
 - ► Hx cardiovascular or peripheral arterial disease
 - Smoker
- BUT it is NOT clear that tx of renal artery stenosis can reverse CKD!

CASE #1

Our patient is over 50, smokes and has hx PAD.
Should we do a renal artery doppler??

Studies DO show a benefit of tx of renal artery stenosis for BP control when the BP is difficult to control with meds.

CASE #1

Our patient should get the following:

- Check meds ask about OTC and herbals
- ► HIV, Hep B, Hep C
- Urine albumin-creatinine ratio
- Consider SPEP, UPEP, serum light chains
- Renal ultrasound

CASE #1

Fast Forward

Our patient's work-up is normal

How do we monitor him going forward?

When would we refer to nephrology?

Chronic Kidney Disease

► WHAT IS OUR JOB?

- Monitor for progression of CKD
 - Impending need for dialysis/transplant referral to nephrology

- Monitor for complications of CKD
 - Anemia
 - Phosphate, calcium, parathyroid
 - ▶ Potassium
- Support patient through decision for dialysis/transplant

Monitoring				Persistent albuminuria categories Description and range			
GFR and Albuminu	GFR and (number of times p GFR and Albuminum			ing / y	A1 Normal to mildly increased <30 mg/g <3 mg/mmol	A2 Moderately increased 30–300 mg/g 3–30 mg/mmol	A3 Severely increased >300 mg/g >30mg/mmol
	G1		Normal or high	≥90	1 if CKD	1	2
	n/1.73 ange	G2	Mildly decreased	60–89	1 if CKD	1	2
	iim/im gan G3a		Mildly to moderately decreased	45–59	1	2	3
gories Bories		G3b	Moderately to severely decreased	30–44	2	3	3
	R cate	G4	Severely decreased	15–29	3	3	4+
	GFI	G5	Kidney failure	<15	4+	4+	4+

to Dofor			Persistent albuminuria categories Description and range					
U	lo keiei				A1	A2	A3	
					Normal to mildly increased	Moderately increased	Severely increased	
					<30 mg/g <3 mg/mmol	30–300 mg/g 3–30 mg/mmol	>300 mg/g >30 mg/mmol	
	(ء	G1	Normal or high	≥90		Monitor	Refer*	
	1.73 m Ige	G2	Mildly decreased	60–89		Monitor	Refer*	
	nl/min/ and rar	G3a	Mildly to moderately decreased	45–59	Monitor	Monitor	Refer	
ories (n	ories (n iption	ories (n iption	G3b	Moderately to severely decreased	30–44	Monitor	Monitor	Refer
catego Descr		G4	Severely decreased	15–29	Refer*	Refer*	Refer	
	GFR	G5	Kidney failure	<15	Refer	Refer	Refer	

When

Referral decision making by GFR and albuminuria. *Referring clinicians may wish to discuss with their nephrology service depending on local arrangements regarding monitoring or referring.

Reasons To Refer to Nephrology

- eGFR < 30 (stages 4 and 5)</p>
- Unclear cause of CKD
- Hematuria not explained by urologic causes
- Albumin-creatinine ratio > 300 mg/g
- Familial kidney disease Alport, polycystic kidney disease
- Potassium > 5.5
- Complications of CKD anemia, bone and mineral problems
- Resistant HTN
- Rapid progression of renal failure

Table 36 Outcomes of early versus late referral

Variable	Early referral mean (SD)	Late referral mean (SD)	P value
Overall mortality, %	11 (3)	23 (4)	< 0.0001
1-year mortality, %	13 (4)	29 (5)	0.028
Hospital length of stay, days	13.5 (2.2)	25.3 (3.8)	0.0007
Serum albumin at RRT start, g/dl [g/l]	3.62 (0.05) [36.2 (0.5)]	3.40 (0.03) [34.0 (0.3)]	0.001
Hematocrit at RRT start, %	30.54 (0.18)	29.71 (0.10)	0.013

Abbreviation: RRT, renal replacement therapy.

Adapted from Am J Med, Chan MR, Dall AT, Fletcher KE, et al.⁶⁷³ Outcomes in patients with chronic kidney disease referred late to nephrologists: a meta-analysis. 120: 1063-1070, 2007, with permission from Elsevier; accessed http://download.journals.elsevierhealth.com/pdfs/journals/0002-9343/PIIS000293430700664X.pdf

- Most common with CKD stages 4 and 5 but can occur in stage 3
 - Most will already be seeing a nephrologist
- How often should we check for anemia?
 - CKD stage 3 check Hgb yearly
 - CKD stage 4-5, not on dialysis check every 6 months
 - CKD stage 5, on dialysis check every 1-3 months

CANNOT ASSUME ANEMIA IS DUE TO CKD!

- Everyone gets further eval for other causes
 - CBC diff
 - Absolute retic count
 - Ferritin, transferrin saturation
 - Vitamin B12 and folate
 - ► If ferritin is low, screen for malignancy

- Anemia will usually look like anemia of chronic disease if due to CKD
 - Normocytic
 - Normochromic
 - Elevated ferritin
 - Absolute retic count is usually low low erythropoietin levels results in decreased production of red cells
 - NO abnormal WBC's or platelets

Consider erythropoietin stimulating agents (ESA's) if:

► Hgb < 10

Transferrin saturation > 25%

Ferritin > 200

If TSAT < 20% and ferritin < 500, give iron first as this often works without need for ESA

ESA contraindications

Active cancer or recent hx of cancer

Hx stroke

CKD Bone-Mineral Disorder

CKD Bone Mineral Disorder

How should we screen for this?

KDIGO 2017

► Stage 3 (GFR < 60)

Check calcium and phosphorus every 6-12 months

Check parathyroid level and vitamin D yearly

- Stage 4 (GFR < 30) and Stage 5 (GFR < 15)</p>
 - Check more frequently

CKD Bone Mineral Disorder

Elevated phosphorus

- Usually does not occur until stage 4
- Treated with low phosphorus diet first
- If that doesn't work (phos > 5.5), given phosphate binders
- Vitamin D deficiency
 - Treated with regular vitamin D supplements initially
 - ▶ If PTH levels are still increasing, switch to calcitriol

Case #2 (FMC patient)

- 58 year old male presents to FMC for follow-up diabetes.
- ► He feels well and has no complaints.

► PMH

- DM metformin, Lantus
- Hyperlipidemia Lipitor
- CAD ASA
- Albuminuria lisinopril 10 mg daily

Case #2

- Exam normal BP = 122/76, BMI = 29
- Just got labs
 - BMP normal except glucose elevated to 248
 - Creatinine = 0.79 (GFR > 60)
 - TP = 6.1, albumin = 3.2, Ca = 8.6
 - ► CBC Hgb = 13.3
 - ► A1C = 9.7
 - Lipids cholesterol = 162, LDL = 107
 - Albumin-creatinine ratio = 2776 (increased from 325 to 1195 to 2776 over the past 2 years)

Does he have CKD?

CKD Classification

Prognosis of CKD by GFR and Albuminuria Categories: KDIGO 2012				Persistent albuminuria categories Description and range			
				A1	A2	A3	
				Normal to mildly increased	Moderately increased	Severely increased	
			<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol		
categories (ml/min/ 1.73 m ²) Description and range	G1	Normal or high	≥90				
	G2	Mildly decreased	60-89				
	G3a	Mildly to moderately decreased	45-59				
	G3b	Moderately to severely decreased	30-44				
	G4	Severely decreased	15-29				
GFR	G5	Kidney failure	<15				

Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

Case #2

- He has CKD stage 1
- BUT his prognosis is not great due to the high albumin-creatinine ratio

DO WE CHALK UP THE HIGH ALBUMIN-CREATININE RATIO TO DIABETES OR DOES HE NEED FURTHER EVAL?

Chronic kidney disease

► WHAT IS OUR JOB?

- Nephrotoxic meds
- Urinary obstruction
- Autoimmune kidney disease
- Multiple myeloma

WORK-UP

Case #2

- Diabetic nephropathy rarely causes this much albuminuria
- He will need:
 - Check meds, including herbal and OTC
 - ► HIV, Hep B, Hep C
 - ► Renal US
 - ► SPEP, UPEP, serum light chains
 - REFER TO NEPHROLOGY will likely need a renal biopsy

How should we best manage his diabetes?

► He is presently on metformin and Lantus.
Chronic Kidney Disease

WHAT IS OUR JOB?

Screen for CKD in patients at risk for CKD to try and slow progression

- ACE/ARB
- SGLT-2
- Appropriate med dosing
- Minimize further damage no nephrotoxic meds, smoking cessation, mgt of DM/HTN

► Goal A1C = 7 (he is 9.7)

► WE SHOULD BE STARTING A SGLT2 INHIBITOR

SUMMARY

Things we are probably not doing but should be!

- Screening for CKD with BOTH creatinine AND albumincreatinine ratio on our non-diabetic, high risk patients as well as diabetic patients
- Ruling out treatable causes of CKD, EVEN IF THEY HAVE DM OR HTN
- Referring to nephrology for albumin-creatinine ratio > 300 and/or GFR < 30</p>
- Checking for anemia and BMD (phosphorus, PTH, vitamin D) every 6-12 months
 - ► DO NOT ASSUME ANEMIA IS DUE TO CKD!

Things we are probably not doing but should be!

- Giving ALL patients with CKD, REGARDLESS OF GFR and REGARDLESS OF CAUSE, an ACE or ARB
- Giving diabetic patients with reduced GFR OR elevated albumin-creatinine ratio a SGLT2 inhibitor
- Staying involved in patient care once they start dialysis
 - Good communication with nephrologist
 - Nephrologists almost NEVER suggest stopping dialysis!